Improving Indoor Air Quality in Commercial Spaces: Technologies, Codes, and Best Practices

Francis Dietz

Vice President, Public Affairs

Don Davis

Vice President, Advocacy and Codes

Ron Cosby

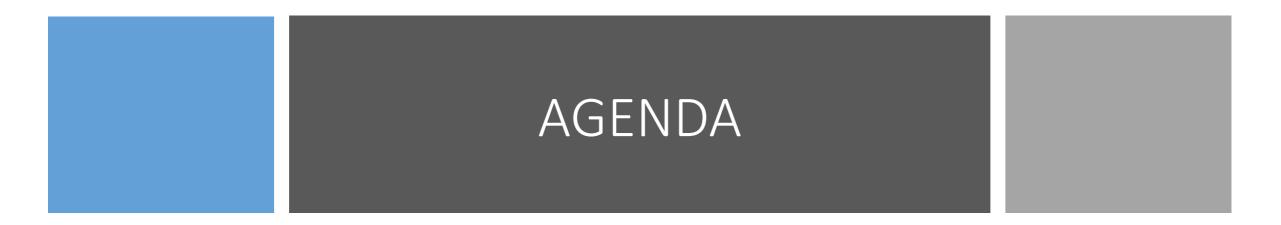
Technology and Thermal Systems Leader, Americas Commercial HVAC

TECHNOLOGIES

Guy Tomberlin

Vice President of Plumbing, Mechanical and Gas Programs

ERNEST CONRAD, PE, LEED AP, CEM, BEAP BOMA FELLOW



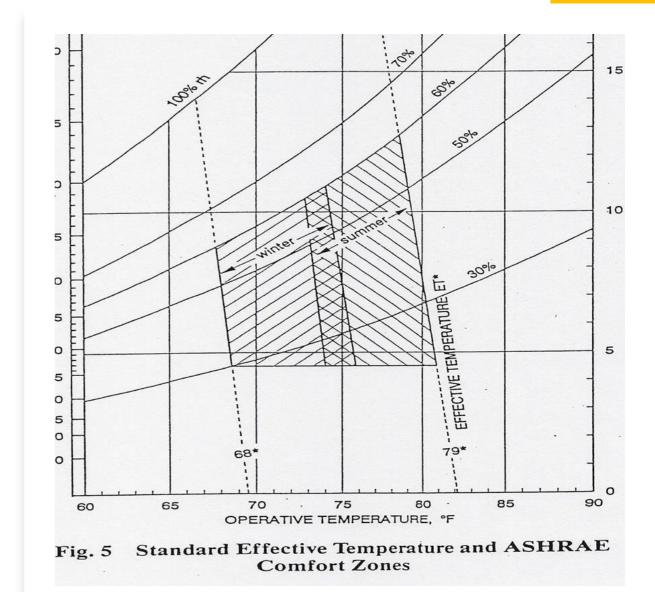
ACHIEVING BEST INDOOR AIR QUALITY

Ernest Conrad

BASICS – CODES & STANDARDS

PHYSICAL CHARACTERISTICS of ORGANISMS AIR CLEANING DEVICES – DO'S & DON'TS

Codes and standards


+

0

- ASHRAE standard
 62.1 minimum
 outdoor ventilation
 5cfm/person
 - minimum
 - or calculate "ventilation rate procedure"

Codes and standards

• ASHRAE Standard 55 – theoretical human comfort chart

PROPERTIES OF AEROSOLS

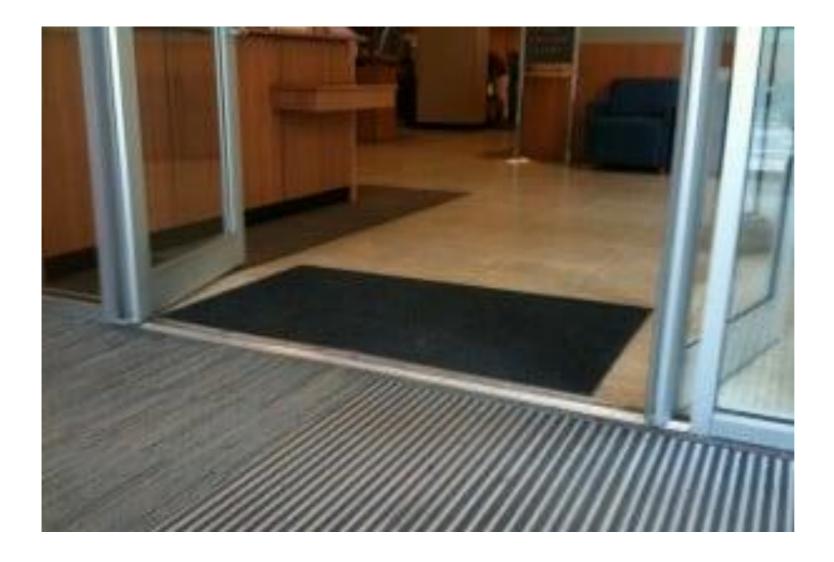
PHYSICAL CHARACTERISTICS of ORGANISMS

	0	0001 č	1001 (1001)		0.1	1 2 3 4 56 8			.000 . 10	0.0
Equivalent Sizes		1	 10 Ångström Units,	1		1 5,000 1, 10,000 2,500 Theoretical Mesi Jsed very infreque	625 <u>11</u>	τ 100 48 28 40 60 40 2 U.S. Sc	reen Mesh	
Electromagnetic Waves		×	Rays —	Ultravio	let Visible Solar Ra	Near Infrared	- munu	nfrared	Microwaves (Ri	ad
Technical Definitions	Gas	Solid:		Fume				lust		+
	Dispersoids			Mist				Spray		
Commission	Soil:	Atterberg or Internat adopted by Internat	onal Std. Classification Soc. Soil Sci. Since 193	System	Clay	Silt	Fine Sa	nd Coarse	Sand Grav	vel
Common Atmospheric Dispersoids				- Smog -		Clouds	and Fog	1		-
					Oil Smokes	1	Fly Ash	und Limestone-	-	1
	-			Tobacc	o Smoke	Coa	I Dust			1
		0, 00,	C.H.	Metall	lurgical Dusts and	le Furne Ca	ement Dust	1		1
		12 19 9	,]			Concentrator M		Beach Sand		
	1	2 2000	Gas		Con	tact	+ Pulverized Coal			1
Typical Particles and			Molecules		Paint Pigr				COPTRICHT	T
		CO H,O HC	SO, Callin	Zinc Oxide F	ume	secticide Dusts ->	-	1	STANFORD RESEARCH	-
Gas Dispersoids				Silica		Ground Tak	Mant		MENLO PARK, CAL	IFOI
		Molecular diam from viscosity da	eters calculated ta at O*C.		Alkali Fu		Pollens			T
			1	Aitken		Milleo	Flour			
				Atmo	spheric Dust		H			
				Combustion	alt Nuclei	Damaging Dust	Pneumatic	+ Hydraulic Nozzl	a Drops	1
				Nuclei	Red Bloo	Dust I	Nozzle Drops dults): 7.5µ ±0.3µ			1
		10.000		iruses ———	Hed Blook		Human			
					Impinge	rs Elec	Sieves	Sieving		-
			H	Ultramicrosoc	ope	Microsc	ope		* Furnishes averag diameter, but no	ge p
Methods for				Electron I	Microscope Centrifuge		Elutriation		++ Size distribution	ma
Particle Size Analysis				Ultracentrifuge		metry ++ Sedi	mentation		obtained by spec calibration.	cial
			HX	Ray Diffraction		Permeability +		Visible to	Eye	+
			H	Adsorpti	Light Scatt		Scanners	Machine Tools (Micrometers, Calip	ers
			4	-Nuclei Counter-	>	- Electrical	Conductivity			1
				Ultras	onics			Settling Cha	mbers	-
				(very limited indu	strial application)	Centril	ugal Separators		4	
Types of					Clo	Liquid Scubbers				
Gas Cleaning Equipment					Packe	d Beds				
				High Efficie	ncy Air Filters-	Comn	non Air Filters	ent Separators		
				Thermal P	recipitation		Mechanical Se			
				(used only f	or sampling) Electrical Precipit					
		Reynolds Number	10-12 10-11 1	0-10, 10-9, 10			10-2 10-1 100	101 102	10', 10	
Terminat	In Air at 25°C. 1 atm.		1 1 3	· · · · ·	3 10 3 10 3	10, 10, 10,	10 3 10 3 10	10 , 10 ,	10 , 10	4
Gravitational Settling* for spheres, sp. gr. 2.0	I atm.	Settling Velocity. cm/sec.	2 3 5 10	2 3 5 10-4	2 3 5 10-3 2 3 5	10-2 , 10-1 23 5	10°23 5 10'2 3.	10 ² 2 3 5	, 10' 15 7	1
							1		1	+
	In Water	Reynolds Number		$10^{-12}_{3}10^{-11}_{3}10^{-10}_{3}$	$10^{-9}_{3}10^{-8}_{3}10^{-7}_{3}$	10, 10, 10,	10, 10, 10, 10,	10°, 10', 10	02, 10,	1
	25°C.	Settling Velocity, cm/sec.	10-10 10-9	10-8 10-23 5	10-0, 10-0,	10-4 10-3	10-2 , 10-1 ,	10° 2 3 5 10	0 2 3 4 5	
Particle Diffusion	In Air at 25°C. 1 atm.	· · · · · · · · · · · · · · · · · · ·	1 3 2 10 ⁻² 3 2 10 ⁻	3,210 5,3,210	5 3 2 10 ⁻⁶	2 10-7	2 10-8	2 10-9	, 10-10	
Coefficient,* cm²/sec.	In Water	· · · 10 ⁻⁵				1 1 1 1 1	the head the		11 1 1 1 1	+
	25°C.	· · · · · · · · · · · · · · · · · · ·		10-7		4 3 2 10 6	· · · · · · · · · · · ·	4 3 2 10-11	10-12	1
*Stokes-Cunningham factor included in		2 3 4 56 8	2 3 4 56 8	2 3 4 56 8	2 3 4 5 6 8					

Figure 2-1. Characteristics of particles and particle dispersions. Courtesy Stanford Research Institute.

Typical particle sizes

- Human hair-----100 microns
- Tobacco smoke -----.01 1micron
- Virus-----.003 .05 micron
- Plant spores------10 30 microns
- Bacteria----- .3 30 microns
- Hepa filter-----.01 10 microns


Filtration Effectiveness

FILTRATION EFFECTIVENESS

MERV level	Dust spot, percent	Typical particulate-filter type	Percent 0.3 to 1.0 μm	Percent 1.0 to 3.0 μm	Percent 3.0 to 10.0 μm			
1	NA	Low-efficiency fiber-glass- and synthetic-media	Efficiency too low to be applicable to Standard 52.2					
2	NA	disposable panels, cleanable filters, and electrostatically charged media panels	determination					
3	NA	as they want to all the state of the second terms	ini Degrig ta	E ortz genine (T. o	List month attack			
4	NA		ing siberro a	Tanta Contan order	an anna aiperte			
5	NA	Pleated filters, cartridge/cube filters, and disposable			20 to 35			
6*	NA	multidensity synthetic link panels			36 to 50			
7	25 to 30				50 to 70			
8	30 to 35	The second second state in a second state of the			Greater than 70			
9	40 to 45	Enhanced-media pleated filters, bag filters of either	A consent	Greater than 50	Greater than 85			
10	50 to 55	fiber-glass or synthetic media, and rigid box filters using lofted or paper media		50 to 65	Greater than 85			
11	60 to 65	the second state in the second state of the second s		65 to 80	Greater than 85			
12	70 to 75			Greater than 80	Greater than 90			
13	80 to 85	Bag filters, rigid box filters, and minipleat cartridge filters	Greater than 75	Greater than 90	Greater than 90			
14	90 to 95		75 to 85	Greater than 90	Greater than 90			
15	Greater than 95		85 to 95	Greater than 90	Greater than 90			
16	98		Greater than 95	Greater than 95	Greater than 95			
The following c Air-Cleaning De	lasses are determined wices for Removal Effi	by a methodology different than that of ANSI/ASHRAE Standa clency by Particle Size	ard 52.2-1999, <i>Met</i>	hod of Testing Gen	eral Ventilation			
17	NA	High-efficiency-particulate-air/ultralow-penetration-air filters evaluated using Institute of Environmental Sciences	99.97-percent IEST Type A					
18	NA	and lechnology (IEST) method of test. Types A through D	99.99-percent IEST Type C					
19	NA	yield efficiencies at 0.3 μ m and Type F at 0.1 μ m	99.999-percent IEST Type D					
20	NA		Greater than 99.999-percent IEST Type F					

*MERV 6 level prescribed by ANSI/ASHRAE Standard 62-2001, Ventilation for Acceptable Indoor Air Quality, for minimum protection of HVAC systems

TABLE 2. Comparison of MERV data, filter type, and prior designations.

Walk-off mats reduce particulates

Dedicated Outside Air SYSTEMS

Carbon-Impregnated HVAC Filter

Guy Tomberlin

Vice President of Plumbing, Mechanical and Gas Programs

The "New Normal" for Indoor Air Quality and the International Code Council (ICC)-Codes

Moving forward towards a Post-COVID environment

Presenter: Guy Tomberlin, Vice President Plumbing Mechanical and Fuel Gas Programs International Code Council

Objectives:

- Identify the importance of code applications pertaining to IAQ.
- Define the "new normal" in Indoor Air Quality (IAQ).
- Describe what the "new normal" in IAQ may mean in different applications.
- More clearly understand how to evaluate systems to better embrace the "new normal" in IAQ.
- Explain how to incorporate the "new normal" in IAQ into different type HVAC Systems.

What is the definition of the New Normal in IAQ?

- Truth-is there is not one generic "new normal" for all applications.
 - No one-size fits all
 - No silver bullet
- IAQ is based on individual specific applications, including things like:
 - The type of structure
 - The type of occupancy
 - The existing equipment
 - The needs of the occupants
 - The ability to alter equipment and practices

What is the New Normal for IAQ?

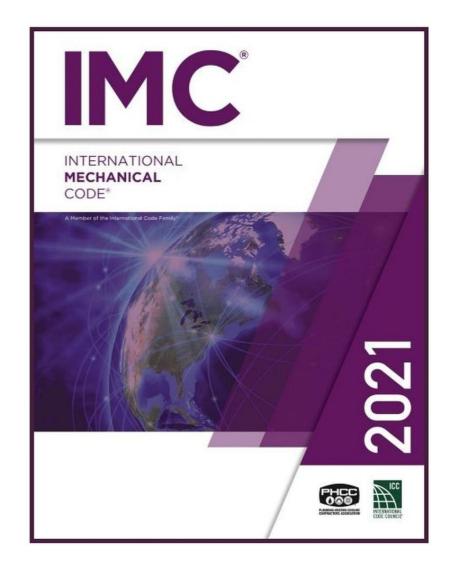
- It may be different for everyone.
- Some may want to replace, upgrade and or retrofit systems.
- Some may already have state of the art equipment.
- Some may learn that changing system components is more challenging than expected.

What do the codes have to do with IAQ anyway?

International Mechanical Code

• New HVAC/OA/IAQ system design and installation, includes the duct systems.

• International Existing Building Code


- Alterations of existing HVAC/OA/IAQ systems.
- International Property Maintenance Code
 - Continued maintenance and operation of HVAC/OA/IAQ systems.

International Mechanical Code

- Encompasses new construction design, engineering, and installation details for HVAC mechanical systems.
 - Air balance required for new systems.
- Original permitting information should be obtainable through permitting records.
- Identify the code used at the time of construction.

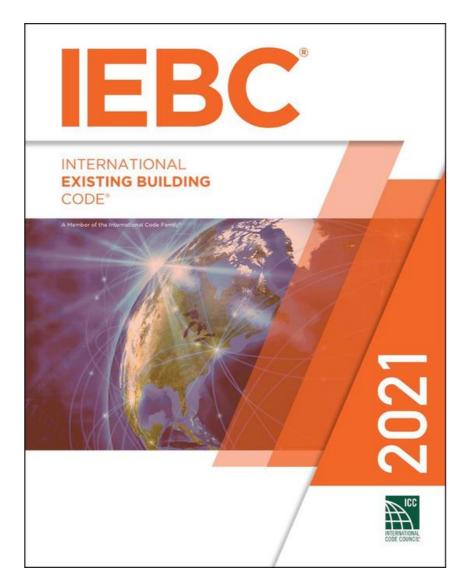
Why is the original design important?

Some have the expectation that <u>all</u> systems meet current code requirements....not realistic.

HVAC systems shall be maintained as they were permitted, designed and installed.

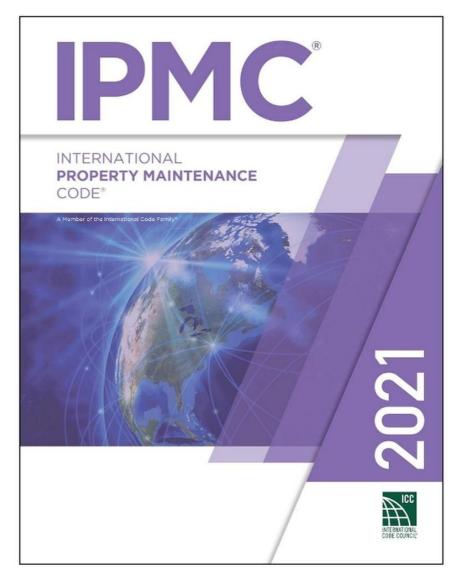
Some buildings may have been designed using codes that are decades old.

As uses and occupancies change, so do the ventilation requirements.


Sometimes Air-Balancing gets overlooked as tenants' transition in, out and around.

International Existing Building Code

- Used when remodeling and retrofitting existing structures.
- Provides construction guidance based on the 3 levels level of activity from replacement operations (Level 1) to complete renovation alterations (Level 3).
- Check for permitting requirements!



International Property Maintenance Code

- Requires that all mechanical equipment is maintained in a safe working condition and shall be capable of performing the intended function.
- Duct systems shall be maintained free of obstructions and capable of preforming the required function.

Are permits required?

- Yes-well....maybe
 - Alterations to any required HVAC appliances and equipment.
 - Additional permanent equipment.
 - Fans (exhaust, make-up, circulation)
 - Electronic filtration
 - Humidifiers
 - Installation of new permanent appliances and equipment.
 - May require plans as well.

Consult with the Authority Having Jurisdiction (AHJ)!

Are permits required?

- No-well...maybe
 - Portable cord and plug (re)movable type equipment.
 - Room air purifiers.
 - Room humidifiers.
 - Room fans.

Keep in mind some types of portable units may impact existing system performance and efficiency. For example, room humidifiers.

Consult with the Authority Having Jurisdiction (AHJ)!

In Summary

- Fully evaluate your specific IAQ needs as a holistic system working together within a structure or space.
- Determine what actions you intend to undertake.
- Determine which codes and standards are applicable.
- Check with AHJ to determine permitting and plan submission needs.
- Commission and air balance final product.

Thank You!

Guy Tomberlin Vice President, PMG Programs Government Relations Cell: 202-603-0792 gtomberlin@iccsafe.org

Ron Cosby

Technology and Thermal Systems Leader, Americas Commercial HVAC

TECHNOLOGIES

Your Building's IAQ Future

Taking a holistic view

A building's interconnected systems and the interactions between those systems result in an occupant experience that is influenced by IAQ.

ASSESS

- Analyzing current state/determining needs
- Projecting the future of the space

MITIGATE

- Developing occupant-centric strategies
- Implementing the solutions
- Improving energy efficiency and sustainability

MANAGE

- Ongoing optimization
- Continuous managing and monitoring

Regaining Trust In Your Building Begins With Assessing Its Current Capabilities

Indoor Air Quality Assessment

- Fact based, data-driven analysis of your building's indoor air quality
- Aligned to latest CDC/ASHRAE[®] guidelines for operating HVAC systems
- Recommend ways to improve IAQ today
- Highlight opportunities for future upgrades

The Four Key Pillars of IAQ

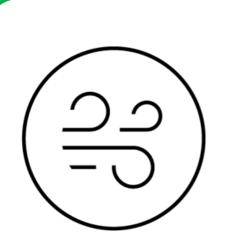
Why an IAQ Assessment?

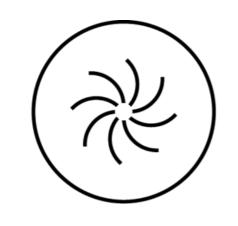
Confidence

Staff and public want to know leaders are addressing their concerns

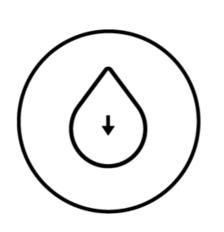
Assess

Internationa

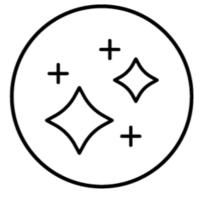

Resilience


Today it's a global pandemic; what's next? IAQ will be an ongoing focus

Sustainability

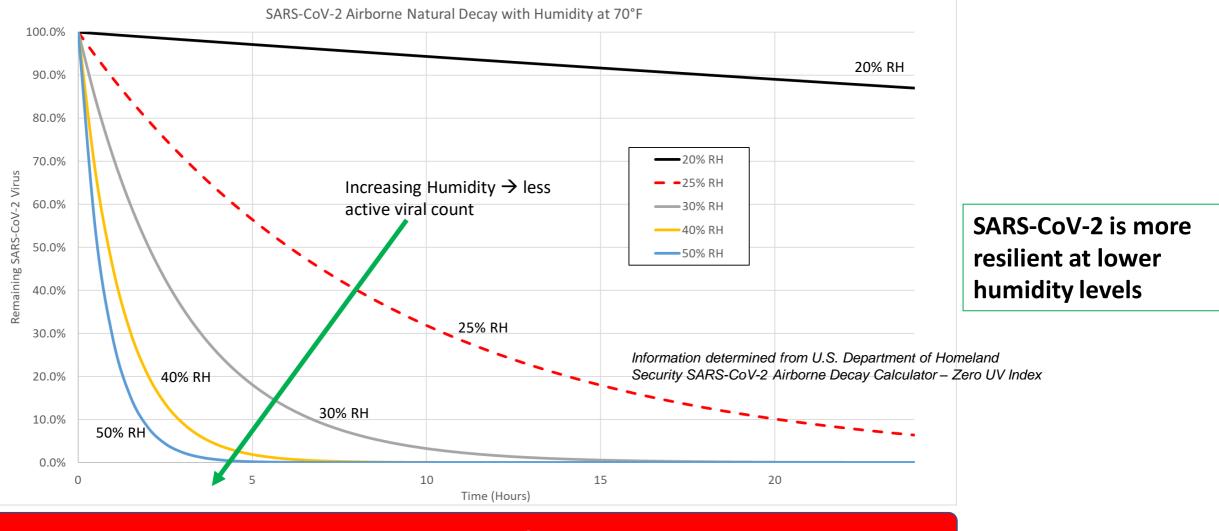

Ensure clean indoor air efforts are in tune with community values

The Four Key Pillars of IAQ



Dilute Making sure plenty of fresh outdoor air dilutes the buildup of indoor contaminants through proper ventilation **Exhaust** Getting exhaust air out is equally important, especially air from kitchens, restrooms, and combustion systems

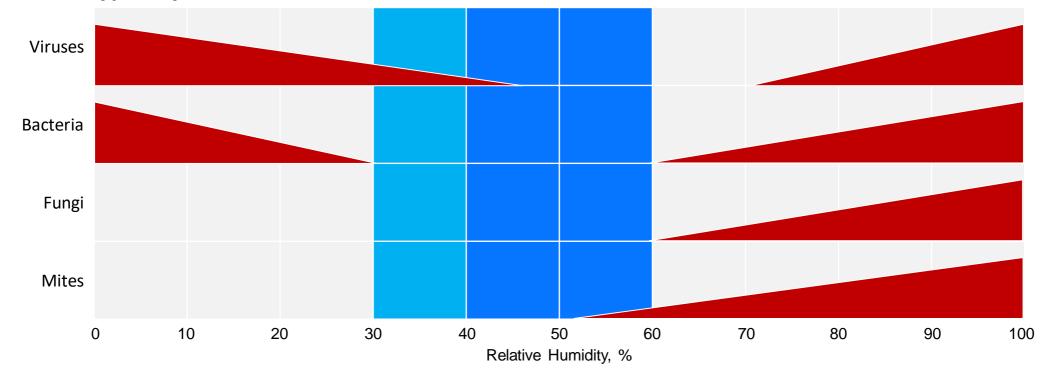
Contain Keeping indoor humidity levels within the ASHRAE[®]recommended range maximizes occupant comfort and reduces the risk of microbial growth



Clean

Humidity Control - Increase Humidity \rightarrow Reduce Risk

SARS-CoV-2 will naturally deactivate at higher humidities \rightarrow Helps reduce need for other abatements

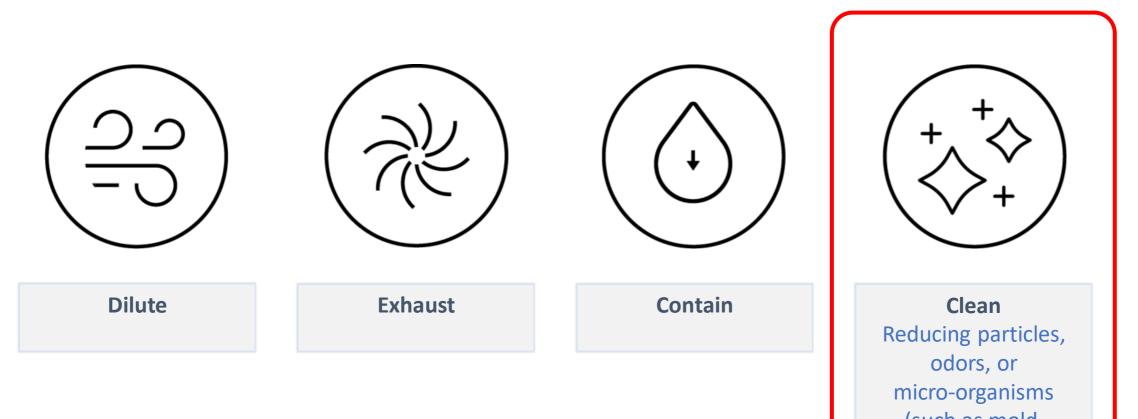


Mitigate

Contain: Humidity Control – Helps Reduce Viral Load and Lessen Impact

Viruses are typically less stable between RH of 40-60%

Sweet spot 40-60% relative humidity for viruses


Information from 2016 ASHRAE® Handbook, HVAC Systems and Equipment

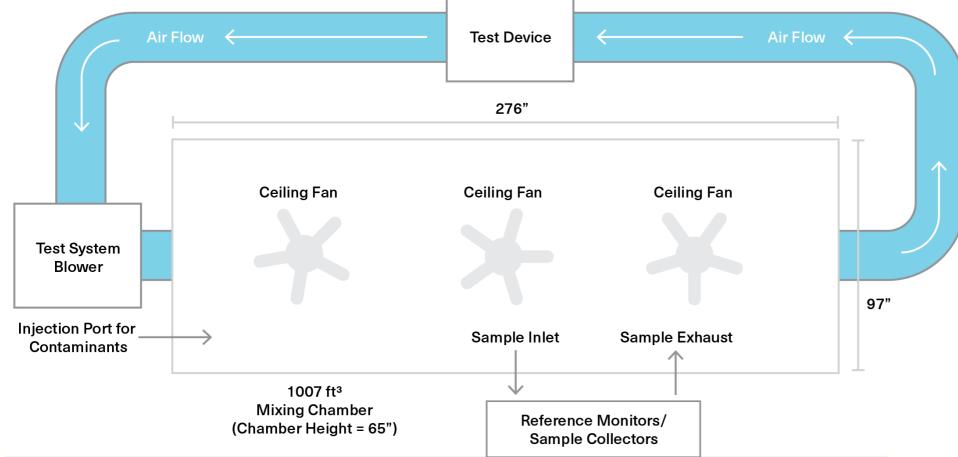
Mitigate

The Four Key Pillars of IAQ

(such as mold, bacteria, and viruses)

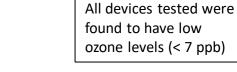
Cleaning Technology Efficacy

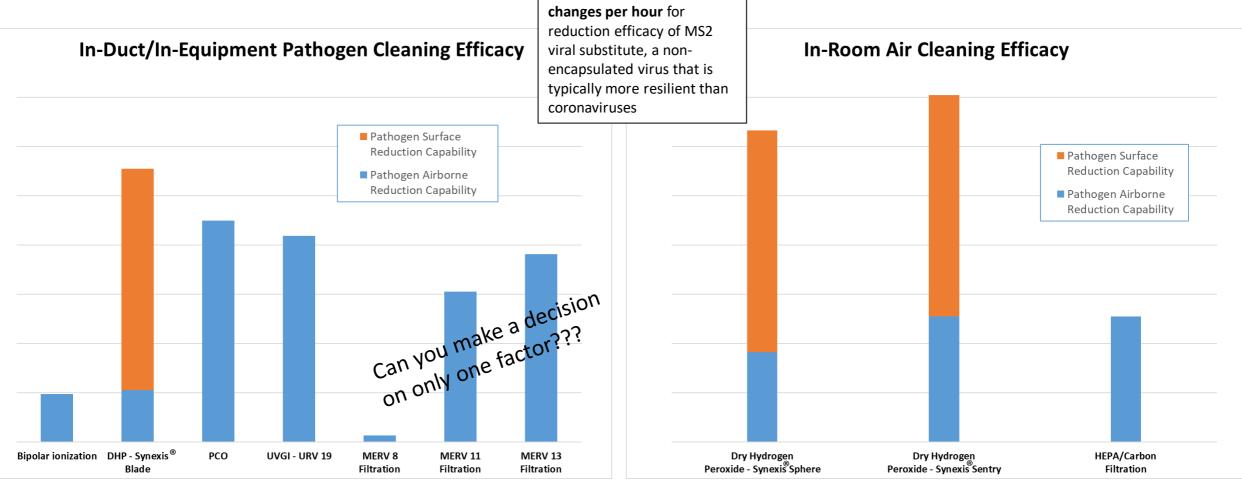
- In order to better describe our IAQ Cleaning Technology portfolio, efficacy testing on multiple technologies was conducted at a third-party lab
- Technologies were examined for two scenarios which define potential customer scenarios
 - In-duct In-equipment capability and/or in-duct
 - In-room Devices located within the room standalone
- Consistent testing methodology to compare technologies against each other and provide industry-wide testing of IAQ cleaning devices
 - Virus reduction capability aerosolized and surface test with MS2 virus
 - Bacteria reduction capability aerosolized only with Staphylococcus aureus
 - VOC reduction capability Formaldehyde and toluene
 - Ozone generation


No silver bullet to a building's IAQ problems – no singular technology addresses everything

Mitigate

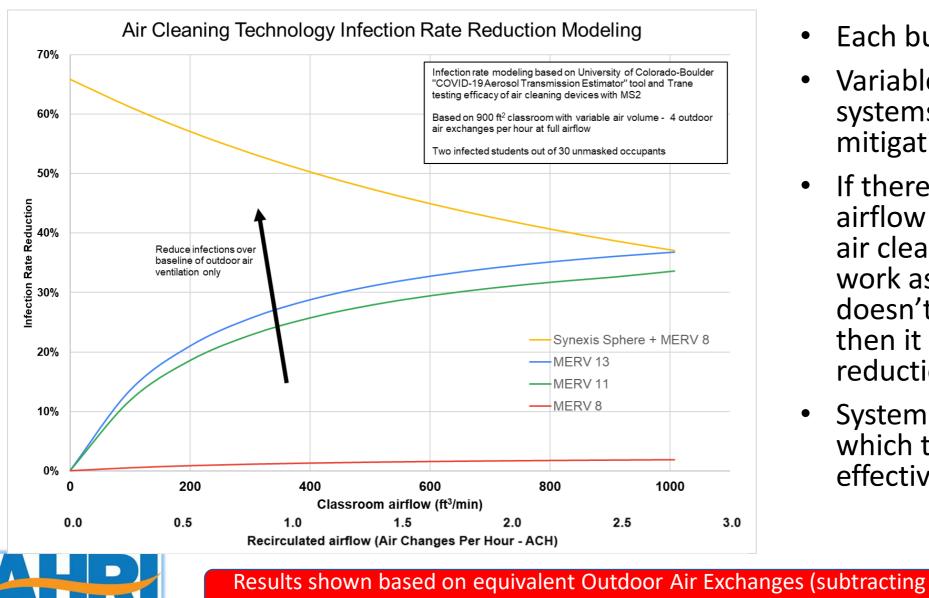
Testing Chamber – In-Room and In-Duct




Consistent testing methodology and process in a large chamber – not a breadbox

IAQ Cleaning Technology Comparison:

Results shown are for 6 air



All devices tested worked to reduce viral count on airborne MS2 Only dry hydrogen peroxide generation devices reduced viral count on surfaces

IAQ Cleaning Technology Comparison:

natural decay)

we make life better®

- Each building is different!
- Variable Air Volume (VAV) systems require different mitigations
- If there's less recirculated airflow then filters and other air cleaning devices may not work as effectively → if the air doesn't go through the filter then it won't work on virus reduction
- System makeup matters for which technology may be most effective for your building use

Mitigate

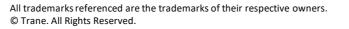
Manage – The Future of IAQ

Controls Platforms are Evolving for the IAQ Future

- Standalone, in-room or building-wide control and communication/dashboard options
- Analyze air quality trends and source potential problems
- Track improvements over time
- Meet measuring performance requirements set by WELL, RESET or your own team
- Engage stakeholders with visual demonstration of results
- Optimize comfort and IAQ for balancing risk mitigation with energy consumption

Confirm impact, build and maintain confidence of the people in your building

WEL


2020

The Future of Building IAQ Starts NOW!

- Each building is different → Work with a professional to provide a systematic approach for assessment for your building
- Develop a mitigation plan that involves all four pillars of IAQ – Dilute, Exhaust, Contain, and Clean
- Manage your building through active controls and service to ensure that your building IAQ and function is optimized for both use and its occupants

Questions?